

Alaska
Fisheries Science
Center

National Marine
Fisheries Service

U.S DEPARTMENT OF COMMERCE

AFSC PROCESSED REPORT 2013-04

Capture-Recapture Analysis
with Hidden Markov Models

December 2013

This report does not constitute a publication and is for information only.
All data herein are to be considered provisional.

This document should be cited as follows:

Laake, J. L. 2013. Capture-recapture analysis with hidden Markov models.
AFSC Processed Rep. 2013-04, 34 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar.
Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Reference in this document to trade names does not imply endorsement by the
National Marine Fisheries Service, NOAA.

CAPTURE-RECAPTURE ANALYSIS

WITH HIDDEN MARKOV MODELS

by

Jeffrey L. Laake

National Marine Mammal Laboratory

Alaska Fisheries Science Center

National Marine Fisheries Service, NOAA

7600 Sand Point Way NE

Seattle WA 98115

Email:jeff.laake@noaa.gov

December 2013

mailto:Email:jeff.laake@noaa.gov

ABSTRACT

Hidden Markov models (HMM) provide a simple, elegant and general structure for de-

velopment of existing and new models for capture-recapture analysis. These models have

been used recently for relatively complex capture-recapture settings and the simplicity

and generality of HMMs could be easily missed amongst the model details. To illustrate

the simplicity and generality of HMMs, I describe how HMMs can be used to fit capture-

recapture models starting with the simple Cormack-Jolly-Seber (CJS) model and extend to

multi-state models with state uncertainty. I demonstrate the HMM algorithm for likelihood

computation and explain R code that can be used to fit HMMs to make this very useful

algorithm more accessible to analysts of capture-recapture data. Development of models

to allow for tag loss, hierarchy of state transitions, and second-order Markov processes for

breeding-feeding area transitions are relatively easily done with this framework.

iii

CONTENTS

Abstract . iii

Introduction .1

Background . 2

Cormack-Jolly-Seber Models . 10

Multi-state Models . 13

Multi-state Models with State Uncertainty . 17

Summary . 20

Acknowledgments . 21

Citations . 22

Appendix . 23

v

INTRODUCTION

Pradel (2005) describes the use of hidden Markov models (HMM) for multi-state

capture-recapture models with uncertain states. His work was followed by similar applica-

tions by Ford et al. (2012), Kendall et al. (2012), and Langrock and King (2013). In each

case, the models were fairly complex and the simplicity and generality of HMMs could be

easily missed amongst the model details. I will attempt to elucidate both the simplicity and

generality of HMMs for capture-recapture models by starting with a fairly simple example

and showing how a variety of more complex models are easily derived. Hopefully this

will make this very useful algorithm more accessible to analysts of capture-recapture data.

I assume that the reader has a basic understanding and knowledge of capture-recapture

models and statistical concepts. A table of notation is provided in the Appendix I.

An HMM is defined as an unobserved sequence {Ct : t = 1,2, ...T} that satisfies the

Markov property, Pr(Ct |Ct−1, ..,C1) = Pr(Ct |Ct−1) which generates an observable state-

dependent sequence {Xt : t = 1,2, ...,T}(Zucchini and MacDonald 2009). For many types

of capture-recapture models, the observed values of the sequence (capture-history) can

include the typically unknown state values (Ct). I will focus on those types of applications

including Cormack-Jolly-Seber (CJS) and extensions that include multiple states and state

uncertainty. Each of these models will be conditioned on the initial release in a known

state but this can easily be generalized (Kendall et al. 2012).

The models and code are in the R (R Core Development Team 2012) package ’marked’

(Laake et al. 2013). I will fit examples of each model using function crm. In doing so I

will refer to other functions (e.g., process.data, make.design.data) in ’marked’ but will not

describe those functions in detail. See Laake et al. (2013) and the help in ’marked’ for

further function documentation. Here I will focus on the the algorithm used to fit HMMs

and the code needed to specify each of the models.

Hidden Markov Model Likelihood and Algorithm

For a detailed explanation of HMMs see Zucchini and MacDonald (2009) from which

this material was drawn. Here I will provide an overview of the HMM likelihood in the

specific context of capture-recapture models which are a sequence of discrete observations

that typically do not assume a stationary state distribution. Let Ct be an integer from 1 to m

representing the true states and xt be an integer from 1 to s representing the observations.

The integers can be attached to state labels (e.g., A or Alive for 1 and D or Dead for 2) or

observation labels (e.g., 1: not seen with label 0, and 2: seen with label 1). In describing

the HMM algorithm I will use the simple Cormack-Jolly-Seber (CJS) model which is used

to estimate survival. For the CJS model, there are m = 2 states: Alive (1 = A) and Dead (2

= D). The s = 2 possible observations are 0 when an animal is not seen at an occasion and

the state is unknown and 1 when the animal is seen at an occasion and thus known to be

alive.

For CJS with a single release occasion followed by five recapture occasions, a re-

alization of the state sequence {Ct : t = 1,2, ...T = 6} might be AAAADD. The animal

was released alive on the first occasion but died in the interval between the 4th and 5th

occasions. The true state sequence is assumed to be first-order Markov. For CJS, this

means that at each occasion the probability the animal is alive or dead depends only on the

state at the previous occasion. Typically in CJS φ is used to represent apparent survival

probability recognizing that it includes permanent emigration. However, I will use S for

survival because later φ is used to describe the HMM algorithm. If survival probability

2

(S) is constant, the four possible transition probabilities are Pr(Ct = A |Ct−1 = A) = S,

Pr(Ct = D |Ct−1 = A) = 1−S, Pr(Ct = D |Ct−1 = D) = 1, and Pr(Ct = A |Ct−1 = D) = 0.

These state transition probabilities are the elements of the m ×m transition probability

matrix Γ. The jkth element of Γ, γ jk is the probability of transitioning from state j to state

k. The rows of Γ must sum to 1 (∑m
k=1 γ jk = 1 for all j). For CJS, Γ is:

Γ: Transition Matrix
Alive Dead

Alive S 1−S
Dead 0 1

.

Unless we can observe the animal at each occasion, we only partially observe the true

state sequence. When the animal is seen we know it is alive, but it could be either alive

or dead if it is not seen. In principle there could be 25 realizations of the 0-1 observation

sequences but the number of possible realizations is less because for some states some

observations are not possible (e.g., Pr(Xt = 1|Ct = D) = 0) . For example, one possible

observation sequence might be 110100. The first “1” implies that the animal was released.

The animal was subsequently seen (recaptured) on the second and fourth occasions but

not on the third occasion. It cannot be seen on the fifth and sixth occasions because the

animal is dead (Pr(Xt = 1|D) = 0) and the CJS model does not use recoveries of dead

animals. These conditional probabilities of the observations given the state are used in the

state-dependent probability matrix D which has s rows and m columns where the element

di j is the Pr(Xt = i |Ct = j) and the columns sum to 1 (∑s
i=1 di j = 1 for all j). For CJS, D is

D : State-dependent Probability Matrix
Alive Dead

0(not seen) 1− p 1
1(seen) p 0

.

3

The rows of D are extracted to create an m×m diagonal matrix P(xt) where the ith diagonal

value is Pr(Xt = xt |Ct = i). For CJS, s = 2. There are two values, 0 (not seen) and 1 (seen)

for xt , so there are only two possible values of P(xt) which are

P(0) =
[

1− p 0
0 1

]
and

P(1) =
[

p 0
0 0

]
.

In addition to Γ and P(xt), the other quantity used to calculate the likelihood is δ ,

the row vector of m values for the initial state probability distribution, For CJS, m = 2 so

δ is the row vector with elements 1 for Alive and 0 for Dead, (e.g.,δ = [1 0]) because

the animal is released alive. The likelihood for a single sequence (e.g., a single capture

history) is

LT = δP1(x1)Γ1P2(x2)Γ2P3(x3)...ΓT−1PT (xT)1′ .

This differs slightly from Equation 2.12 in Zucchini and MacDonald (2009) in that Γ and

P(xt) have subscripts to recognize the possibility of time dependent matrices. The notation

1′ is a column vector of 1s which when multiplied by the resulting final probability state

vector, sums the probabilities of all states.

The HMM algorithm (Zucchini and MacDonald 2009) recursively computes the like-

lihood value by traversing along the capture history maintaining a current state row vector

αt (forward probabilities) where the jth element is the joint probability Pr(X1 = x1, ...Xt =

4

xt ,Ct = j). These forward probabilities are a sequence of vectors α1,α2, ...,αT where

α1 = δP1(x1) and

αt = δP1(x1)Γ1P2(x2)Γ2P3(x3)...ΓT−1PT (xT) .

It follows that αt = αt−1Γt−1Pt(xt) and LT = αT 1′. To demonstrate these calculations

I will show them for two simple CJS capture histories sequences with T = 3 and constant

survival (S) and capture probability (p) to simplify the notation.

For CJS, the animal is released alive so δ = [1 0] and because the animal is released

and not recaptured on the first occasion, P1(1) is by definition:

P1(1) =
[

1 0
0 0

]
,

so α1 = δP1(1) = [1 0] for each history. First consider a capture history 100 in which

the animal was released and never seen again. Because x2 = 0 and x3 = 0 we only need

ΓtPt(0) which is the same for each occasion because S and p do not change over time:

ΓP(0) =

 S 1−S

0 1

 1− p 0

0 1

=

 S(1− p) 1−S

0 1

 .

The value of α2 is computed by multiplying the row vector α1 and matrix ΓP(0):

α2 = α1ΓP(0) =
[

1 0
] S(1− p) 1−S

0 1

=
[

s(1− p) 1−S
]
.

The value of α3 is computed by multiplying α2 and ΓP(0):

α3 =α2ΓP(0)=
[

S(1− p) 1−S
] S(1− p) 1−S

0 1

=
[

S2(1− p)2 (1−S)S(1− p)+1−S
]
.

The sum of the elements of α3 is the probability of observing the capture history 100 which

is described in Lebreton et al. (1992) with recursive χ calculations for the tail (ending 0s)

5

probability.

Now consider a more interesting example capture history with a value of 101. The

value of α2 is the same as the previous capture history because each starts with 10. At

occasion 2, there is a non-zero probability that the animal is dead because it was not seen.

However, this is updated with the data at occasion 3. To compute, α3 we need ΓP(1)

which is:

ΓP(1) =

 S 1−S

0 1

 p 0

0 0

=

 Sp 0

0 0

and α3 is computed by multiplying α2 and ΓP(1):

α3 = α2ΓP(1) =
[

S(1− p) 1−S
] Sp 0

0 0

=
[

S2 p(1− p) 0
]
.

With the addition of the last observation, the probability the animal is dead is 0 and the

probability of observing the capture history 101 is S2 p(1− p). Only the forward probabili-

ties are needed for the likelihood calculation but for predictions of the most likely state at a

point in time the backward probabilities are needed. These are described in the Appendix

II using these same CJS sequences.

While the above algorithm will work, it is possible for the computations to underflow

numerically in computing the product of probabilities for longer sequences. Zucchini and

MacDonald (2009) suggested scaling the likelihood and using an alternate algorithm to

compute the logarithm of LT . They define φt = αt/(αt1′) for t = 1,...T . Thus,

φ1 = δP1(x1)/(δP1(x1)1′) ,

and

φt = φt−1Γt−1Pt(xt)/(φt−1Γt−1Pt(xt)1′) ,

and

6

logLT = log(δP1(x1)1′)+
T

∑
t=2

log
(
φt−1Γt−1Pt(xt)1′

)
.

In Appendix III, I describe R code that implements the above equations using the algorithm

described on page 47 of Zucchini and MacDonald (2009) for their Equation 2.12 which

does not assume that δ is the stationary distribution of the Markov chain.

The HMM algorithm is generic in the sense that it works for any model with an arbi-

trary number of states (m) and observations (s) as long as the vector δ and matrices Γ and

D are defined properly. The generic nature of HMM provides a generalizable platform for

developing existing and new models for capture-recapture analysis. Below I will describe

the development of some currently existing models and a new model that is a special case

of the model described by Kendall et al. (2012). However, to make the models useful for

describing real data, I need to introduce some additional notation. Not all capture histories

will have the same length. For example, with a CJS model a cohort of new animals may

be released at each occasion. Thus for the first cohort, the capture history from t = 1,...T

is used in the likelihood but for the remaining cohorts the capture history will be shorter. I

define t* to be the first occasion used in the likelihood (e.g., t* = 2 for the second release

cohort). For general models, we will want the various parameters to vary by occasion

and by individual animal. Letting i index individuals and t index occasions, we can use a

subscripted transition matrix Γit and state-dependent probability matrix Dit . In computer

code, these become four dimensional (4-d) arrays which are named gamma and dmat in

the R code. These have dimensions n, T, m, m and n, T, s, m respectively where n is the

number of animals or number of capture histories if they are grouped. Allowing for the

possibility of an estimated initial distribution that varies by animal at occasion t*, δi(xt∗)

becomes a matrix with dimension n, m named delta in the R code.

7

Developing an HMM model only requires creating code to produce the gamma, dmat

and delta quantities from the specified parameters. In the ’marked’ package, the models

described below are “hmmCJS”, “hmmMSCJS” and “hmmuMSCJS”. For each of these

models there is a function that creates gamma, dmat and delta from the model-specific

parameters. In MARK terminology (White and Burnham 1999), parameters like survival

(S) and capture probability (p) are called “real” parameters and these are computed via an

inverse-link transformation from the “beta” parameters. Zucchini and MacDonald (2009)

refer to these as “natural” and “working” parameters respectively. The link function is

used to bound real parameters such as probabilities in the interval 0 to 1 from the beta pa-

rameters. In marked a logit link is used for probabilities such as S and p and a multinomial

logit (mlogit) link is used for a set of probabilities that are constrained to sum to one. If θ j

is a real parameter and β j is a working parameter, for a logit link θ j = 1/(1+ exp(−β j))

and for an mlogit link θ j = exp(β j)/∑k exp(βk) where ∑ j θ j = 1 and one of the β j must

be set to 0 to have identifiable parameters. In ’marked’ for HMM models, the mlogit link is

implemented with an intermediate parameter λ j and a log-link (λ j = exp(β j)) and setting

λ j = 1 for one of the probabilities and then normalizing by the sum (i.e., θ j = λ j/∑k λk).

Using that approach provides complete flexibility for the user in setting which real param-

eter is computed by subtraction (i.e., for which j exp(β j) = 1). The beta parameters are

related to the real parameters through a design matrix which is created from a formula and

a design data frame for the parameter (Laake et al. 2013). The design data frames contain

a row for each animal-occasion, which enables animal and occasion-specific variation in

the parameters. As an example, I will describe the design data, formula and design matrix

for p with a small example with n = 2 and T = 3 and then show how this is used to populate

dmat. The simplest set of design data might be

8

Parameter no. Id time
1 1 2
2 1 3
3 2 2
4 2 3

where Id specifies the animal and time is a factor variable for occasion 2 and 3 (for occa-

sion 1 p = 1 and is not estimated). If the formula for p was ˜time, the design matrix would

be

Parameter no. Intercept time
1 1 0
2 1 1
3 1 0
4 1 1

.

Let the working parameters be β1 and β2 for p. Then values of p are

Parameter no.
p1 1/(1+ exp(−β1)
p2 1/(1+ exp(−β1−β2)
p3 1/(1+ exp(−β1)
p4 1/(1+ exp(−β1−β2)

9

From these parameters, dmat is a 2×2 set of 2×2 matrices as shown below:

Id time
1 2 1− p1 1

p1 0
1 3 1− p2 1

p2 0
2 2 1− p3 1

p3 0
2 3 1− p4 1

p4 0

.

The first two dimensions will be much larger for real data. Something similar is done

for S to construct gamma. Models will have various different parameters but the general

process is the same. Now I will describe some of these types of HMM models and show

an example of fitting a model with ’marked’.

CORMACK-JOLLY-SEBER MODELS

The CJS model has been described already and I will not repeat its description other

than to mention that in the R code survival probability (S) is named Phi to be consistent

with MARK (White and Burnham 1999). The CJS model is rather simple and thus the

code to compute Γ (cjs gamma), D (cjs dmat) and δ (cjs delta) given in Appendix III is

simple as well. Each function is passed an argument named pars which is a list structure

containing a matrix for Phi and p. The values of pars are used to fill the four dimensional

with id and occasion-specific transition and state-dependent probability matrices. The

code sets p = 1 for the initial release occasion t* (F[i] in the R code) for each animal. The

cjs delta function assigns an initial state distribution for each capture history that contains

a 1 for the observed state and 0 elsewhere. For CJS the observed state is Alive. The

cjs delta function is also used for the remaining models described here because in each

10

case the likelihood is conditioned on the first known state of release.

The European dipper (Cinclus cinclus) data described by Lebreton et al. (1992) are

used below as an example for fitting a model in which survival is constant and capture

probability varies by time.

library(marked)

This is marked 1.1.3

data(dipper)

crm(dipper,model="hmmCJS",

model.parameters=list(Phi=list(formula=~1),

p=list(formula=~time)))

Model: HMMCJS

Processing data

255 capture histories collapsed into 53

Creating design data.

Fitting model

##

Elapsed time in minutes: 0.0593

##

crm Model Summary

##

Npar : 7

-2lnL: 664.5

AIC : 678.5

##

Beta

Estimate

Phi.(Intercept) 0.2131

p.(Intercept) 1.2950

p.time3 0.8013

p.time4 0.6514

p.time5 0.9982

p.time6 1.4672

p.time7 1.9955

NULL

The steps that crm performed are the same as in RMark (Laake 2013) and can be done

separately:

11

dp=process.data(dipper,model="hmmCJS")

255 capture histories collapsed into 53

show names of list elements

names(dp)

[1] "data" "model" "mixtures"

[4] "freq" "nocc" "nocc.secondary"

[7] "time.intervals" "begin.time" "initial.ages"

[10] "group.covariates" "start" "ehmat"

[13] "ObsLevels" "fct_dmat" "fct_gamma"

[16] "fct_delta" "m"

notice functions and ObsLevels which define the model

dp$ObsLevels

[1] 0 1

make the design data for the parameters

ddl=make.design.data(dp)

show design data for first 10 records

value of p=1 when cohort=time - release occasion

head(ddl$p,10)

id occ time cohort age sex freq Time Cohort Age fix

1 1 2 2 6 0 Female 12 0 5 -4 NA

2 1 3 3 6 0 Female 12 1 5 -3 NA

3 1 4 4 6 0 Female 12 2 5 -2 NA

4 1 5 5 6 0 Female 12 3 5 -1 NA

5 1 6 6 6 0 Female 12 4 5 0 1

6 1 7 7 6 1 Female 12 5 5 1 NA

7 2 2 2 6 0 Male 11 0 5 -4 NA

8 2 3 3 6 0 Male 11 1 5 -3 NA

9 2 4 4 6 0 Male 11 2 5 -2 NA

10 2 5 5 6 0 Male 11 3 5 -1 NA

The process.data step returns a list with the data and various attributes set for the chosen

model including the code for the functions used to create dmat, gamma and delta. The

make.design.data function creates a list with a design data frame for each parameter in

the model. Design data can be added or a field named fix can be added or modified to fix

real parameters. If the value of fix is NA the real parameter is estimated, otherwise it set

12

to the specified value. The processed data list and the design data can then be passed as

arguments to crm as shown below:

crm(dp,ddl,

model.parameters=list(Phi=list(formula=~time),

p=list(formula=~1)))

Fitting model

##

Elapsed time in minutes: 0.0357

##

crm Model Summary

##

Npar : 7

-2lnL: 659.7

AIC : 673.7

##

Beta

Estimate

Phi.(Intercept) 0.514372

Phi.time2 -0.698134

Phi.time3 -0.600897

Phi.time4 -0.006081

Phi.time5 -0.075709

Phi.time6 -0.178067

p.(Intercept) 2.220448

NULL

MULTI-STATE MODELS

A multi-state model as an extension to CJS simply extends the possible states in which

an animal is alive and incorporates transitions between the states. The total number of

states, m, is the number of alive states plus one for dead. The initial probability vector

δ (xt∗) is 1 for the element of the first observed state and as with the CJS model the capture

probability for the first occasion is fixed to 1 to condition on the first observation in the

sequence. To describe the Γ and D matrices I will use m = s = 4 and assume state-specific

13

survival probability S j j = 1,3 and state-specific capture probability p j j = 1,3 but they

can vary by occasion and individual as well.

The probability of transitioning from alive state j to alive state k (γ jk), is the product of

survival probability (S j) in state j and the transition probability ψ jk. If the animal does not

transition to an alive state, it dies with probability 1−S j and death is an absorbing state.

Γ: Transition Matrix
1 2 3 D

1 S1ψ11 S1ψ12 S1ψ13 1−S1
2 S2ψ21 S2ψ22 S2ψ23 1−S2
3 S3ψ31 S3ψ32 S3ψ33 1−S3
D 0 0 0 1

The animal is observed to be in state j with probability p j and is not seen with proba-

bility 1− p j and a dead animal is never “seen” because any dead recoveries are not used

in this model.

D : State-dependent Probability Matrix
1 2 3 D

0 1− p1 1− p2 1− p3 1
1 p1 0 0 0
2 0 p2 0 0
3 0 0 p3 0

This is a slightly more complicated model and the code to compute Γ and D shown

below must accommodate parameters varying by stratum. The parameter list pars contains

matrices for S, p and ψ . The latter uses an mlogit link to ensure ∑
m−1
j=1 ψi j = 1 but pars only

contains exp(x) (inverse log link) and these are normalized by dividing by the sum. Also,

in ms gamma two matrices are composed as shown below and then multiplied element

wise together to compute Γ.

14

1 2 3 D

1 S1 S1 S1 1−S1

2 S2 S2 S2 1−S2

3 S3 S3 S3 1−S3

D 0 0 0 1

1 2 3 D

1 ψ11 ψ12 ψ13 1

2 ψ21 ψ22 ψ23 1

3 ψ31 ψ32 ψ33 1

D 1 1 1 1

As with CJS, both Γ (gamma from ms gamma) and D (dmat from ms dmat) are returned

as four dimensional arrays with id and occasion-specific transition and state-dependent

probability matrices. The cjs delta function described above is used to create delta. The

code is in Appendix III.

As an example of a MS model, I will use the data mstrata in RMark, which has three

alive states: A, B and C. I will fit the model with constant S and p and constant transition

probability matrix that can vary for each of the nine possible transitions. When the design

data are created for Psi, a fixed value of 1 is assigned when stratum = tostratum which

fixes the transition probability for staying in the same state such that it is 1 minus the sum

of the other probabilities in the mlogit link function. The value that is used can be set with

subtract.stratum argument for Psi in make.design.data or can be arbitrarily selected by

setting the values of fix for Psi.

dp=process.data(mstrata,model="hmmMSCJS")

252 capture histories collapsed into 252

make the design data for the parameters

ddl=make.design.data(dp)

show design data for first 10 records of Psi

value of Psi=1 for staying in same state for

identifiability with mlogit.

head(ddl$Psi[,c(1:8,12)],10)

15

id occ tostratum stratum time cohort age freq fix

1 1 1 A A 1 3 0 650 1

2 1 1 B A 1 3 0 650 NA

3 1 1 C A 1 3 0 650 NA

4 1 1 A B 1 3 0 650 NA

5 1 1 B B 1 3 0 650 1

6 1 1 C B 1 3 0 650 NA

7 1 1 A C 1 3 0 650 NA

8 1 1 B C 1 3 0 650 NA

9 1 1 C C 1 3 0 650 1

10 1 2 A A 2 3 0 650 1

fit model

crm(dp,ddl,

model.parameters=list(S=list(formula=~1),

p=list(formula=~1),

Psi=list(formula=~-1+stratum:tostratum)))

Fitting model

##

Elapsed time in minutes: 0.1635

##

crm Model Summary

##

Npar : 8

-2lnL: 30444

AIC : 30460

##

Beta

Estimate

S.(Intercept) 0.79134

p.(Intercept) 0.02081

Psi.stratumB:tostratumA -1.10540

Psi.stratumC:tostratumA -1.09682

Psi.stratumA:tostratumB -1.10524

Psi.stratumC:tostratumB -1.09699

Psi.stratumA:tostratumC -1.10719

Psi.stratumB:tostratumC -1.10669

NULL

16

MULTI-STATE MODELS WITH STATE UNCERTAINTY

If animals are seen but their state cannot always be determined with certainty, then we

can introduce an observation recorded as “u” like in the implementation of the Kendall et

al. (2012) model in MARK (White and Burnham 1999). For this model following Kendall

et al. (2012), we need to introduce an additional parameter δ j (different from δ used in

HMM algorithm) which is the probability that the animal in state j is observed to be in

state j. Thus, an animal in state j is recorded as “u” with probability 1−δ j. For this model,

Γ (gamma) is unchanged from the MS model and only D (dmat from function ums dmat)

changes. Following on with the example above we add a row to D (s = 5) for the “u”

observation. The matrix D is similar to an MS model except now the probability that state

j is recorded is p jδ j and the probability of being seen in state j but recorded as an unknown

state is p j(1−δ j).

D : State-dependent Probability Matrix
1 2 3 D

0 1− p1 1− p2 1− p3 1

1 p1δ1 0 0 0

2 0 p2δ2 0 0

3 0 0 p3δ3 0

u p1(1−δ1) p2(1−δ2) p3(1−δ3) 0

A simple example is observations of weaning in sea lions (Zalophus californianus).

There are three states (m = 3): 1) S: suckling; 2) W: weaned; and 3) D: dead. Transition

from suckling to weaned is considered permanent so ψWW = 1. There are four possible

observation values (s = 4), “0”, “S”, “W” and “u”. However, we can only observe suckling

behavior (“S”) and we never know for certain when the animal is weaned (δW = 0). Thus,

all observations of weaned pups will be recorded as “u”. For this model, Γ and D are

17

Γ: Transition Matrix
S W D

S (1−ψSW)φS ψSW φS (1−φS)

W 0 φW (1−φW)

D 0 0 1

D : State-dependent Probability Matrix
S W D

0 1− pS 1− pW 1

S pSδS 0 0

W 0 0 0

u pS(1−δS) pW 0

The construction of dmat is done with ums dmat (code in Appendix III). It also uses
two matrices which are constructed and then multiplied together element wise. In this case
the matrices are:

1 2 3 D

0 1− p1 1− p2 1− p3 1

1 p1 0 0 0

2 0 p2 0 0

3 0 0 p3 0

u p1 p1 p1 0

1 2 3 D

0 1 1 1 1

1 δ1 1 1 1

2 1 δ2 1 1

3 1 1 δ3 1

u 1−δ1 1−δ2 1−δ3 1

For occasion 1 and for the first occasion of each release cohort p j = 1 and δ j = 1 for all j

to make the likelihood conditional on first release. The initial distribution is also set with

cjs delta.

As an example, I will create some simulated data from a specified model using simHMM

and then fit the same model to the simulated data. I will use the suckling-weaning example

with three states (m = 3). In this case, the W stratum will never be observed so it is neces-

sary to specify the strata (state) labels for the alive states. Below I define the attributes of

18

the simulated data by processing the data and creating and manipulating design data and

specifying formula as if I was fitting the model. Once the processed data list and design

data list are created a call to simHMM generates a realization from the specified model.

simulate a single release cohort of 200 animals with 1 release

and 10 recapture occasions; at least 2 unique ch are needed in simHMM

simd=data.frame(ch=c("S0000000000","SS000000000"),freq=c(100,100),stringsAsFactors=F)

define simulation/fitting model; default for non-specified parameters is ~1

modelspec=list(p=list(formula=~stratum))

process data with S,W strata; S=1 and W=2

sd=process.data(simd,model="hmmuMSCJS",strata.labels=c("S","W"))

2 capture histories collapsed into 2

create design data

ddl=make.design.data(sd)

set Psi transition for weaned to suckling to 0; fix is created automatically for

Psi to fix one of the transitions to 1 for mlogit.

default is to set Psi-xx to 1 (staying in same state)

ddlPsifix[ddlPsistratum==2&ddlPsitostratum==1]=0

set delta(W) to 0; non-fixed contain NA

ddl$delta$fix=ifelse(ddl$delta$stratum==2,0,NA)

set initial parameter values for model S=~1,p=~stratum,Psi=~1,delta=~1

initial=list(S=log(.99/.01),p=c(0,-3),delta=log(.5/.5),Psi=log(0.07/.93))

call simmHMM to get a single realization

realization=simHMM(sd,ddl,model.parameters=modelspec,initial=initial)

Now the same model used to generate the data is used to fit the data using the same

steps but this time calling crm.

take that realization and process data and fix parameters in design data

sd=process.data(realization,model="hmmuMSCJS",strata.labels=c("S","W"))

200 capture histories collapsed into 174

rddl=make.design.data(sd)

rddlPsifix[rddlPsistratum==2&rddlPsitostratum==1]=0

19

rddl$delta$fix=ifelse(rddl$delta$stratum==2,0,NA)

fit model

crm(sd,rddl,initial=initial,model.parameters=modelspec)

Fitting model

##

Elapsed time in minutes: 0.0747

##

crm Model Summary

##

Npar : 5

-2lnL: 3651

AIC : 3661

##

Beta

Estimate

S.(Intercept) 5.0565

p.(Intercept) 0.1067

p.stratumW -3.0203

delta.(Intercept) -0.0454

Psi.(Intercept) -2.3469

NULL

SUMMARY

The hidden Markov modeling approach provides a simple, elegant, and general struc-

ture for development of existing and new models for capture-recapture analysis. The code

described here provides a prototype in R but most of these functions have been converted

to FORTRAN in the ’marked’ package to improve execution times. Conversion to Auto-

matic Differentiation Model Builder (ADMB) (Fournier et al. 2012) would likely provide

further improvements because numerical derivative computations would not be needed.

20

Development of models to allow tag loss, hierarchy of state transitions, and second-order

Markov processes for breeding-feeding area transitions are relatively easily done with this

framework.

ACKNOWLEDGMENTS

I appreciate the reviews of Tomo Eguchi and Devin Johnson which provided very

useful improvements to the manuscript. A big thanks to Gary Duker and Christine Baier

for their excellent editorial skills.

21

CITATIONS

Ford, J. H., M. V. Bravington, and J. Robbins. 2012. Incorporating individual variabil-
ity into mark-recapture models. Methods Ecol. Evol. 3:1047–1054.

Fournier, D. A., H. J. Skaug, J. Ancheta, A. Magnusson, M. N. Maunder, A. Nielsen,
and J. Sibert. 2012. Optimization methods and software AD model builder :
using automatic differentiation for statistical inference of highly parameterized
complex nonlinear models. Optim. Methods Softw. 27:233–249.

Kendall, W. L., G. C. White, J. E. Hines, C. A. Langtimm, and J. Yoshizaki. 2012.
Estimating parameters of hidden Markov models based on marked individuals:
use of robust design data. Ecology 93:913–920.

Laake, J. L. 2013. RMark : an R interface for analysis of capture-recapture data with
MARK. AFSC Processed Rep. 2013-01, 25p. Alaska Fish. Sci. Cent., NOAA,
Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Laake, J. L., D. S. Johnson, and P. B. Conn. 2013. marked: An R package for
maximum-likelihood and MCMC analysis of capture-recapture data. Methods
Ecol. Evol. 4:885–890.

Langrock, R., King, R. 2013. Maximum likelihood estimation of mark-recapture-
recovery models in the presence of continuous covariates. Ann. Appl. Stat.
7:1709-1732

Lebreton, J. D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling sur-
vival and testing biological hypotheses using marked animals: a unified approach
with case studies. Ecol. Monogr. 62:67–118.

Pradel, R. 2005. Multievent: An extension of multistate capture-recapture models to
uncertain states. Biometrics 61:442–447.

R Core Development Team. 2012. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http:
//www.R-project.org/.

White, G. C. and K. P. Burnham. 1999. Program MARK: survival estimation from
populations of marked animals. Bird Study 46:120-139.

Zucchini, W. and I. MacDonald. 2009. Hidden Markov models for time series: An
introduction using R. Chapman & Hall/CRC.

22

APPENDIX I

Notation
Symbol Definition

m number of states
s number of observation values

t, t*, T t is used to index time from t = 1,...T or t=t*,...T when sequences vary in length
Ct state occupied by Markov chain at time t

D(t) s x m matrix with i jth element di j = Pr(Xt = i |Ct = j)
Γt m x m transition probability matrix with jkth element γ jk = Pr(Ct+1 = k |Ct = j)
LT likelihood

Pt(xt) m x m diagonal matrix; ith diagonal value Pr(Xt = xt |Ct = i)
Xt observation at time t
αt row vector of forward probabilities
βt row vector of backward probabilities; β also used for working parameters
δ initial distribution of Markov chain
φt normalized row vector of forward probabilities
p capture probability
S survival probability; word Phi is used in code for S in CJS

23

APPENDIX II

Backward Probabilities and State Prediction
Only forward probabilities are needed for the likelihood calculation but to compute pre-
dictions of the most likely state at a point in time the backward probabilities are needed.
Like their counterparts, the backward probabilities are computed recursively which start
with β ′3 = 1′ and then are defined recursively as

β
′
t−1 = ΓP(xt)β

′
t

Using a capture history of 100, we get

β
′
2 = ΓP(0)β ′3 =

[
S(1− p) 1−S

0 1

][
1
1

]
=

[
S(1− p)+1−S

1

]
and

β
′
1 =ΓP(0)β ′2 =

[
S(1− p) 1−S

0 1

][
S(1− p)+1−S

1

]
=

[
S2(1− p)2 +S(1− p)(1−S)+1−S

1

]
.

Now, using the forward and backward probabilities, you can predict the most likely state
(alive/dead) for each occasion. For occasion t, the jth element of:

αtβt/
(
αT 1′

)
is Pr(Ct = j|X1 = x1, ...,XT = xT) where vector multiplication αtβt is element wise. The
values for a capture history of 100 are:

α
′
1β
′
1/
(
αT 1′

)
=

[
1
0

][
S2(1− p)2 +S(1− p)(1−S)+1−S

1

]
/S2(1− p)2+S(1− p)(1−S)+1−S=

[
1
0

]

α
′
2β
′
2/
(
αT 1′

)
=

[
S(1− p)

1−S

][
S(1− p)+1−S

1

]
/S2(1− p)2 +S(1− p)(1−S)+1−S

α
′
3β
′
3/
(
αT 1′

)
=

[
S2(1− p)2

(1−S)S(1− p)+1−S

][
1
1

]
/S2(1− p)2 +S(1− p)(1−S)+1−S

24

Expanding these out yields: probability it was alive at time 1 is:

Pr(C1 = 1|X1 = 1,X2 = 0,X3 = 0) = 1 ,

probability it was alive at time 2 is:

Pr(C2 = 1|X1 = x1, ...,XT = xT)= [S2(1− p)2+S(1− p)(1−S)]/[S2(1− p)2+S(1− p)(1−S)+1−S] ,

and probability it was alive at time 3 is:

Pr(C3 = 1|X1 = x1, ...,XT = xT)= [S2(1− p)2]/[S2(1− p)2+S(1− p)(1−S)+1−S] .

The values for a capture history of 101 are simpler:

β
′
2 = ΓP(1)β ′3 =

[
Sp 0
0 0

][
1
1

]
=

[
Sp
0

]

β
′
1 = ΓP(0)β ′2 =

[
S(1− p) 1−S

0 1

][
Sp
0

]
=

[
S2 p(1− p)

0

]

α
′
1β
′
1/
(
αT 1′

)
=

[
1
0

][
S2 p(1− p)

1

]
/S2 p(1− p) =

[
1
0

]

α
′
2β
′
2/
(
αT 1′

)
=

[
S(1− p)

1−S

][
Sp
0

]
/S2 p(1− p) =

[
1
0

]

α
′
3β
′
3/
(
αT 1′

)
=

[
S2 p(1− p)

0

][
1
1

]
/S2 p(1− p) =

[
1
0

]

The values are all the same because the animal was seen on the last occasion and thus alive
the entire time.

25

APPENDIX III

R code for Hidden Markov Models

The code shown here is written in R and was originally used in ’marked’ but has been
replaced by FORTRAN code to speed up execution time. It is shown here because most
will find it more readable than the FORTRAN code. All current code for ’marked’ can be
found at https://github.com/jlaake/marked.

HMMLikelihood implements the algorithm described on page 47 of Zucchini and Mac-
Donald (2009) for their Equation 2.12 which does not assume that the initial distribution
is the stationary distribution of the Markov chain. HMMLikelihood computes the log-
likelihood for a single sequence (x) from first which can be greater than 1 to its length
T. Its arguments gamma (Γt for t = 1, ...,T −1), dmat (Dt for t = 1, ...,T) and delta (δ)

are arrays computed for this sequence from the current parameter vector. The steps in the
algorithm are:

1. Assign initial φt∗ = δPt∗(xt∗)/(δPt∗(xt∗)1′) and lnl = log((δPt∗(xt∗)1′))

2. Loop over remaining occasions t = t*+1,T doing the following:

(a) Compute v which is a product of vector φt−1, the matrix Γt−1 (gamma[t-1,,]

element t-1 in the gamma array) and diag(dmat[t,x[t],]) which is Pt(xt), a di-
agonal matrix with the diagonal elements being row x[t] of Dt from element t

in the dmat array. The arrays gamma and dmat are only 3-d because they are
for a specific animal.

(b) Sum values of v into u and sum log-likelihood value log(u)

(c) Update φt = v/u.

26

HMMLikelihood=function(x,first,m,T,dmat,gamma,delta)

{
Arguments:

x: observed sequence (capture (encounter) history)

first: occasion to start sequence

m: number of states

T: number of occasions; sequence length

dmat: array of occasion specific observation probabilty matrices

gamma: array of occasion specific transition matrices

delta: initial state distribution

Other variables:

lnl: log likelihood value

phi: alpha/sum(alpha) sequence as defined in Zucchini/MacDonald

v: temp variable to hold phi calculations

u: sum(v)

Assign prob state vector for initial observation: delta*p(x_first)

v=delta%*%diag(dmat[first,x[first],])

Compute log-likelihood contribution for first observation; for

models that condition on first observation u=1,lnl=0

u=sum(v)

phi=v/u

lnl=log(u)

Loop over occasions for this encounter history (x)

for(t in (first+1):T)

{
Compute likelihood contribution for this occasion

v=phi%*%gamma[t-1,,]%*%diag(dmat[t,x[t],])

u=sum(v)

lnl=lnl+log(u)

Compute updated state vector

phi=v/u

}
return(lnl)

}

The log-likelihood for a set of capture-histories is the sum of the individual history
log-likelihoods multiplied by the number of individuals with that history (freq). The R
function loglikelihood does the following:

27

1. Computes a model-specific set of real parameters at the current parameter values
(par vector) using the function reals, which multiplies the parameter vector and de-
sign matrix and applies the inverse link function for that type of parameter. It also
assigns any fixed real parameters in ddl[[parname]]$fix.

2. Calls model-specific functions to compute gamma and dmat, four dimensional ar-
rays which contain id and occasion-specific transition and state-dependent probabil-
ity matrices, and delta, 2-d array containing id-specific initial state distribution.

3. Calls HMMLikelihood for each capture history (animal) (x) passing the history-
specific three dimensional arrays gamma and dmat arrays and vector delta to com-
pute the log-likelihood.

4. Returns total negative log-likelihood after multiplying by frequency of capture his-
tory.

loglikelihood=function(par,type,x,start,m,T,freq=1,fct_dmat,fct_gamma,

fct_delta,ddl,dml,parameters,debug=FALSE)

{
Arguments:

par: vector of parameter values for log-likelihood evaluation

type: vector of parameter names used to split par vector into types

x: matrix of observed sequences (row:id; column:occasion/time)

start: matrix with a row for each id and two columns

1) first observed state, 2) first occasion observed

m: number of states

T: number of occasions; sequence length

freq: vector of history frequencies or 1

fct_dmat: function to create D from parameters

fct_gamma: function to create gamma - transition matrix

fct_delta: function to create initial state probability distribution matrix

ddl: design data list of parameters for each id

model: formulas for each parameter type

Other variables:

parlist: list of parameter vectors split by type (eg Phi, p in CJS)

28

gamma: array of transition matrices - one for each id, time

dmat: array of observation probability matrices - one for each id, time

#

Create list of parameter matrices from single input parameter vector

First split parameter vector by prameter type (type)

parlist=split(par,type)

pars=list()

For each parameter type call function reals to compute vector

of real parameter values; then use laply and split to create

a matrix of parameter values with a row for each id and column for

each occasion.

for(parname in names(parameters))

{
R=reals(ddl=ddl[[parname]],dml=dml[[parname]],

parameters=parameters[[parname]],parlist=parlist[[parname]])

pars[[parname]]=laply(split(R,ddl[[parname]]$id),function(x) x)

}
compute four dimensional arrays of id- and occasion-specific

observation and transition matrices using parameter values

dmat=fct_dmat(pars,m,F=start[,2],T)

gamma=fct_gamma(pars,m,F=start[,2],T)

compute matrix of initial state distribution for each id

delta=fct_delta(pars,m,F=start[,2],T,start)

loop over each encounter history in sapply and

create log-likelihood vector - an element for each x

sum is total log-likelihood across individuals

return negative log-likelihood

neglnl=-sum(freq*sapply(1:nrow(x),function(id)

HMMLikelihood(x[id,],start[id,2],m,T,

dmat=dmat[id,,,],gamma=gamma[id,,,],

delta=delta[id,])))

return(neglnl)

}
reals=function(ddl,dml,parameters,parlist)

{
Computes real estimates for HMM models using inverse of

link from design matrix and for a particular parameter

type (parname); handles fixed parameters assigned by

29

non-NA value in field named fix in the ddl dataframe.

dm=dml$fe

Currently for log,logit or identity link, return the inverse values

values=switch(parameters$link,

log=exp(as.vector(dm%*%parlist)),

logit=plogis(as.vector(dm%*%parlist)),

identity=as.vector(dm%*%parlist))

if(!is.null(ddl$time.interval))values=values^ddl$time.interval

if some reals are fixed, set reals to their fixed values

if(!is.null(ddl$fix))

values[!is.na(ddl$fix)]=ddl$fix[!is.na(ddl$fix)]

return vector of reals

return(values)

}

The above algorithm and code for computing the likelihood remains unchanged for
any model, which makes generalization quite easy. Fitting a particular type of model (e.g.,
CJS, Multistate CJS) only requires the development of the functions fct dmat, fct gamma

and fct delta to create the required arrays from the parameter values. Here I will be con-
sidering models where the initial release state is known and the likelihood is conditioned
on that first known state (e.g., release of a live animal in CJS). If an animal is observed in
state j at occasion t∗, then δ is a vector of 0s except the jth element is 1 where j is the initial
known state value xt∗. Also the diagonal matrix, Pt∗(xt∗) has all zeros on the diagonal ex-
cept for the element corresponding to observation of state j is 1. Thus, δ (xt∗)P1(xt∗)1′ = 1
and its logarithm is thus 0. For these conditional models, if t* = T, there is no information
in the sequence.

The functions to create dmat, gamma and delta for the CJS model (hmmCJS) are
cjs dmat, cjs gamma and cjs delta as shown below.

cjs_dmat=function(pars,m,F,T)

{
add first occasion p=1

pmat=array(NA,c(nrow(pars$p),T,2,2))

for (i in 1:nrow(pmat))

{
pmat[i,F[i],,]=matrix(c(0,1,1,0),nrow=2,ncol=2,byrow=TRUE)

30

for(j in F[i]:(T-1))

{
p=pars$p[i,j]

pmat[i,j+1,,]=matrix(c(1-p,1,p,0),nrow=2,ncol=2,byrow=TRUE)

}
}
pmat

}
cjs_gamma=function(pars,m,F,T)

{
create four dimensional (4-d) array with a matrix for each id and occasion

from pars$Phi which is a matrix of id by occasion survival probabilities

phimat=array(NA,c(nrow(pars$Phi),T-1,m,m))

for (i in 1:nrow(phimat))

for(j in F[i]:(T-1))

{
phi=pars$Phi[i,j]

phimat[i,j,,]=matrix(c(phi,1-phi,0,1),nrow=2,ncol=2,byrow=TRUE)

}
phimat

}
cjs_delta=function(pars,m,F,T,start)

{
if(is.list(m))m=m$ns*m$na+1

delta=matrix(0,nrow=nrow(start),ncol=m)

delta[cbind(1:nrow(start),start[,1])]=1

delta

}

The functions to create dmat, gamma and delta for the Multi-state CJS model (hm-
mMSCJS) are ms dmat, ms gamma and cjs delta. The former two functions are shown
below.

ms_dmat=function(pars,m,F,T)

{
create four dimensional (4-d) array with a matrix for each id and occasion from

from pars$p which is a matrix of id by occasion x state capture probabilities

31

which is split across occasions for multiple states;

each dmat has m+1 rows (0 + m states) and m+1 columns - m states + dead

add first occasion p=1

pmat=array(NA,c(nrow(pars$p),T,m,m))

for (i in 1:nrow(pmat))

{
pdiag=diag(rep(1,m-1))

pmat[i,F[i],,]=cbind(rbind(1-colSums(pdiag),pdiag),c(1,rep(0,nrow(pdiag))))

for(j in F[i]:(T-1))

{
pdiag=diag(pars$p[i,((j-1)*(m-1)+1):(j*(m-1))])

pmat[i,j+1,,]=cbind(rbind(1-colSums(pdiag),pdiag),c(1,rep(0,nrow(pdiag))))

}
}
pmat

}
ms_gamma=function(pars,m,F,T)

{
create an four dimensional (4-d) array with a matrix for each id and occasion for S from pars$S

which is a matrix of id by occasion x state survival probabilities

if(is.list(m))m=m$ns*m$na+1

phimat=array(NA,c(nrow(pars$S),T-1,m,m))

for (i in 1:nrow(phimat))

{
for(j in F[i]:(T-1))

{
s=pars$S[i,((j-1)*(m-1)+1):(j*(m-1))]

smat=matrix(s,ncol=length(s),nrow=length(s))

phimat[i,j,,]=rbind(cbind(smat,1-s),c(rep(0,length(s)),1))

}
}
create a 4-d array from pars$Psi which is a matrix of id by occasion x state^2

non-normalized Psi probabilities which are normalized to sum to 1.

psimat=array(NA,c(nrow(pars$Psi),T-1,m,m))

for (i in 1:nrow(psimat))

{
for(j in F[i]:(T-1))

{

32

psi=pars$Psi[i,((j-1)*(m-1)^2+1):(j*(m-1)^2)]

psix=matrix(psi,ncol=sqrt(length(psi)),byrow=TRUE)

psix=psix/rowSums(psix)

psimat[i,j,,]=rbind(cbind(psix,rep(1,nrow(psix))),rep(1,nrow(psix)+1))

}
}
The 4-d arrays are multiplied and returned

phimat*psimat

}

The functions to create dmat, gamma and delta for the Multi-state CJS model with
state uncertainty (hmmuMSCJS) are ums dmat, ms gamma and cjs delta. The function
ums dmat is shown below.

ums_dmat=function(pars,m,F,T)

{
create 4-d array with a p matrix for each id and occasion

from pars$p which is a matrix of id by occasion x state capture probabilities

which is split across occasions for multiple states;

also and a 4-d array with delta and

then return their product; splits across occasion for multiple states

add first occasion p=1

pmat=array(NA,c(nrow(pars$p),T,m+1,m))

for (i in 1:nrow(pmat))

{
pdiag=diag(rep(1,m-1))

pmat[i,F[i],,]=cbind(rbind(1-colSums(pdiag),pdiag,colSums(pdiag)),

c(1,rep(0,nrow(pdiag)+1)))

for(j in F[i]:(T-1))

{
pdiag=diag(pars$p[i,((j-1)*(m-1)+1):(j*(m-1))])

pmat[i,j+1,,]=cbind(rbind(1-colSums(pdiag),pdiag,colSums(pdiag)),

c(1,rep(0,nrow(pdiag)+1)))

}
}
create 4-d array with a delta matrix for each id and occasion

from pars$delta which is a matrix of id by occasion-state of

33

probabilities of identifying state

which is split across occasions for multiple states;

add first occasion delta=1 for known state at release

deltamat=array(NA,c(nrow(pars$delta),T,m+1,m))

for (i in 1:nrow(deltamat))

{
delta=rep(1,m-1)

deltax=matrix(1,ncol=length(delta),nrow=length(delta))

diag(deltax)=delta

deltamat[i,F[i],,]=cbind(rbind(rep(1,ncol(deltax)),deltax,1-delta),

rep(1,length(delta)+2))

for(j in F[i]:(T-1))

{
delta=pars$delta[i,((j-1)*(m-1)+1):(j*(m-1))]

deltax=matrix(1,ncol=length(delta),nrow=length(delta))

diag(deltax)=delta

deltamat[i,j+1,,]=cbind(rbind(rep(1,ncol(deltax)),deltax,1-delta),

rep(1,length(delta)+2))

}
}
return the product of the 4-d arrays

return(pmat*deltamat)

}

34

	This PR should be cited as follows.pdf
	Page 1

